Learning Coordinated Traffic Light Control

نویسندگان

  • Tong Thanh Pham
  • Tim Brys
  • Matthew E. Taylor
چکیده

Traffic jams and suboptimal traffic flows are ubiquitous in our modern societies, and they create enormous economic losses each year. Delays at traffic lights alone contribute roughly 10 percent of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Some distributed constraint optimization approaches have also been used, but focus on cases where the traffic flows are known. This paper presents a preliminary comparison between these two classes of optimization methods in a complex simulator, with the goal of eventually producing real-time algorithms that could be deployed in real-world situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swarm Intelligence Applied to Traffic Lights Group Formation

Several traffic control approaches address the problem of reducing traffic jams. A class of these approaches deals with coordination of traffic lights to allow vehicles traveling in a given direction to pass an arterial without stopping. This paper presents an approach where each traffic light behaves like a social insect, having coordinated signals plan as tasks to be performed. The model uses...

متن کامل

Optimization of Urban Multi-intersection Traffic Flow via Q-learning

Congestions of the traffic flow within the urban traffic network have been a challenging task for all the urban developers. Many approaches have been introduced into the current system to solve the traffic congestion problems. Reconfiguration of the traffic signal timing plan has been carried out through implementation of different techniques. However, dynamic characteristics of the traffic flo...

متن کامل

An Optimal Dynamic Control Method for an Isolated Intersection Using Fuzzy Systems

Traffic flow systems are nonlinear and uncertain, so it is very difficult to find their optimal points. In traditional traffic control systems, the traffic lights of crossings change in a fixed time period that is not optimal. On the other hand, most proposed systems are sufficiently capable of coping with the uncertainties of traffic flow. To solve this problem, there is a need to develop expe...

متن کامل

Intelligent Traffic Light Control

Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm based on reinforcement learning. We hav...

متن کامل

Doas 2006 Project: Reinforcement Learning of Traffic Light Controllers Adapting to Accidents

Last year we started a project concerned with intelligent traffic control. Using a simulator that models urban road traffic, we developed an improved traffic light controller based on measuring traffic congestion on the roads and reinforcement learning. This year an important focus will be on dealing with traffic accidents. In this student project we want to investigate a learning traffic contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013